organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

6-Fluoro-4-methyl-2-(3-pyridyl)-1,2,3,4tetrahydroguinoline

Luis A. Vizcaya,^a Asiloé J. Mora,^a* Leonor Y. Vargas,^b Vladimir V. Kouznetsov^b and Ali Bahsas^c

^aLaboratorio de Cristalografía, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela, ^bLaboratorio de Ouímica Orgánica y Biomolecular, Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Colombia, and ^cLaboratorio de Resonancia Magnética Nuclear, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela Correspondence e-mail: asiloe@ula.ve

Received 30 March 2007; accepted 5 May 2007

Key indicators: single-crystal synchrotron study; T = 120 K; mean σ (C–C) = 0.002 Å; R factor = 0.063; wR factor = 0.178; data-to-parameter ratio = 24.5.

In the title compound, $C_{15}H_{15}FN_2$, the tetrahydropyridine ring adopts a half-chair conformation. Hydrogen bonds of the type $N-H \cdots N$ form extended zigzag chains related by 2₁ screw axes running along [010]. Additionally, $C-H\cdots\pi$ hydrogen bonds contribute to the stabilization of the crystal structure, which packs with an efficiency of 68.2%.

Related literature

For related literature, see: Allen et al. (1987); Cremer & Pople (1975); Obodovskaya et al. (1985); Rybakov et al. (2004); Vargas-Méndez et al. (2003); Zavalishin et al. (1977).

Experimental

Crystal data $C_{15}H_{15}FN_2$ $M_r = 242.29$ Orthorhombic, Pbca a = 16.2219 (7) Å b = 8.5208 (2) Å c = 18.1612 (7) Å V = 2510.31 (16) Å³

Z = 8Synchrotron radiation $\lambda = 0.50915 \text{ Å}$ $\mu = 0.04 \text{ mm}^-$ T = 120 K $0.20 \times 0.05 \times 0.05 \mbox{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: none 23667 measured reflections

4099 independent reflections 3706 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.033$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.063$	H atoms treated by a mixture of
$wR(F^2) = 0.178$	independent and constrained
S = 1.13	refinement
4099 reflections	$\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$
167 parameters	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C16/C5-C8/C17 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots N2^{i}$ C4 - H4 · · · Cg ⁱⁱ	0.90 (2) 1.00	2.15 (2) 2.87	3.0300 (18) 3.7421 (16)	165.5 (18) 146

Symmetry codes: (i) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, z; (ii) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: PLATON (Spek, 2003) and publCIF (Westrip, 2007).

The authors thank FONACIT-Venezuela (grant No. LAB-97000821). We also thank Gavin B. M. Vaughan and Michela Brunelli, ESRF, France, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2006).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Brandenburg, K. (2001). DIAMOND. Version 2.1e. Crystal Impact GbR, Bonn, Germany.
- Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Obodovskaya, A. E., Starikova, Z. A., Ivanov, Y. A. & Pokrovskaya, I. E. (1985). J. Struct. Chem. 26, 734-737.
- Rybakov, V. B., Alekseev, N. V., Sheludyakov, V. D., Ivanov, Y. A., Frolov, A. Y. & Aslanov, L. A. (2004). Acta Cryst. E60, 01145-01146.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Vargas-Méndez, L. Y., Castelli, M. V., Kouznetsov, V. V., Urbina, G. J. M., López, S. N., Sortino, M., Enriz, R. D., Ribas, J. C. & Zacchino, S. (2003). Bioorg. Med. Chem. 11, 1531-1550.

Westrip, S. P. (2007). PublCIF. In preparation.

Zavalishin, E. I., Zalukaev, L. P. & Ignatęv, N. A. (1977). J. Struct. Chem. 18, 314-316.

supplementary materials

Acta Cryst. (2007). E63, o2914 [doi:10.1107/S1600536807022222]

6-Fluoro-4-methyl-2-(3-pyridyl)-1,2,3,4-tetrahydroquinoline

L. A. Vizcaya, A. J. Mora, L. Y. Vargas, V. V. Kouznetsov and A. Bahsas

Comment

In this work, the structure of the compound 6-fluoro-4-methyl-2-(3'-pyridil)-1,2,3,4-tetrahydroquinoline (I) is presented, which was prepared from the related homoallylamine derivative by mixing with H₂SO₄ (85%),CHCl₃ at 363 K for 10–12 hrs (Vargas *et al.*, 2003). There is a binary axis bisecting the C2—C3 and C6—C17 bonds (Cs = +8.2 (2)°) (Cremer & Pople,1975) in the pyridine ring; therefore, this ring adopts the half-chair conformation (Fig. 1), as seen in the related structures DISHIW (Obodovskaya *et al.*, 1985) and IXAHOE (Rybakov *et al.*, 2004) (Cambridge Structural Database, 2006). C2 and C3 are out of the pyridine ring mean plane by 0.302 (1)Å and -0.314 (1) Å, respectively. The methyl group in position 4 and the pyridyl group in position 2 are bisectorial and equatorial to the pyridine ring, respectively. The N1—C17 distance is shorter than the N1—C2 distance by 0.0604 (2)Å (Table 1). The asymmetry in the N—C distances have also been observed in three 1,2,3,4-tetrahydroquinoline compounds substituted in positions 2,4,6 reported in the CSD [DISHIW, IXAHOE, MHXHQV] (Obodovskaya *et al.*, 1985; Rybakov *et al.*, 2004; Zavalishin *et al.*, 1977), and have been attributed to resonance effects between the benzene ring and the electron pair of N1, awarding a pseudo double character to the N1—C17 bond.

The crystal structure is essentially lamellar, with layers of molecules bonded by hydrogen bonds packing in a sinusoidal way along the [001] direction (Fig.2 & Table 2). This interaction by hydrogen bond forms extended zigzag chains along [010]. In the chain depicted in Fig. 2, pairs of molecules are related by 2_1 screw axis. Non-conventional C—H···aromatic hydrogen bonds between benzene rings (C5—C8/C16—C17) and hydrogen atoms of neighboring layers link every two layer. Between these hydrogen-bonded double-layers there are intercalated H···H hydrophophic interactions; all these attractive and disruptive interactions contribute to the stabilization of the crystal structure, which packs with an efficiency of 68.2% of filled space.

Experimental

The synthesis of the fluoro tetrahydroquinoline derivative is explained elsewhere (Vargas *et al.*, 2003). Single crystals were obtained from the slow evaporation of 50 mg of $C_{15}H_{15}FN_2$ from chloroform.

Refinement

The H atom of N1 refined freely. The other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aromatic H atoms and C—H = 0.99 Å for methylene H atoms, both with $U_{iso}(H) = 1.2U_{eq}(C)$, and C—H = 0.98 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms.

Figures

Fig. 1. Asymmetric unit and labeling of atoms in (I), showing thermal ellipsoids with 50% probability.

Fig. 2. Layer packing of (I) seen down *b*. [Symmetry codes: (i) -x + 3/2, y + 1/2, *z*; (ii) -x + 1, y - 1/2, -z + 1/2.]

6-Fluoro-4-methyl-2-(3-pyridyl)-1,2,3,4-tetrahydroquinoline

Crystal data

$C_{15}H_{15}FN_2$	$D_{\rm x} = 1.282 {\rm ~Mg~m}^{-3}$
$M_r = 242.29$	Melting point: 387-388 K
Orthorhombic, Pbca	Synchrotron radiation $\lambda = 0.50915 \text{ Å}$
Hall symbol: -P 2ac 2ab	Cell parameters from 3048 reflections
a = 16.2219 (7) Å	$\theta = 9.1 - 42.7^{\circ}$
b = 8.5208 (2) Å	$\mu = 0.04 \text{ mm}^{-1}$
c = 18.1612 (7) Å	<i>T</i> = 120 K
$V = 2510.31 (16) \text{ Å}^3$	Needle, colourless
Z = 8	$0.20\times0.05\times0.05~mm$
$F_{000} = 1024$	

Data collection

Bruker SMART CCD area-detector diffractometer	4099 independent reflections
Radiation source: Beam line ID-11 ESRF	3706 reflections with $I > 2\sigma(I)$
Monochromator: double crystal Si	$R_{\rm int} = 0.033$
Detector resolution: 8.0 pixels mm ⁻¹	$\theta_{\text{max}} = 22.1^{\circ}$
T = 120 K	$\theta_{\min} = 1.6^{\circ}$
oscillation scans	$h = -22 \rightarrow 23$
Absorption correction: none	$k = -12 \rightarrow 12$
23667 measured reflections	$l = -26 \rightarrow 26$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.063$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.178$	$w = 1/[\sigma^2(F_o^2) + (0.0761P)^2 + 1.7041P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.13	$(\Delta/\sigma)_{\rm max} < 0.001$
4099 reflections	$\Delta \rho_{max} = 0.39 \text{ e} \text{ Å}^{-3}$
167 parameters	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods returned a structure invariant direct Extinction correction: none

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The observed criterion of $F^2 > 2$ sigma(F^2) is used only for calculating -R-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
F1	0.25209 (6)	0.89015 (15)	0.22468 (6)	0.0409 (3)
N1	0.56467 (7)	0.87020 (14)	0.10281 (7)	0.0219 (3)
N2	0.84577 (8)	0.68002 (16)	0.08529 (8)	0.0274 (3)
C2	0.62185 (8)	0.75116 (16)	0.13001 (7)	0.0205 (3)
C3	0.57922 (9)	0.59195 (16)	0.12436 (8)	0.0239 (3)
C4	0.50292 (9)	0.58544 (17)	0.17442 (8)	0.0246 (3)
C5	0.37335 (8)	0.74564 (19)	0.19852 (8)	0.0259 (4)
C6	0.32926 (8)	0.8843 (2)	0.19385 (8)	0.0272 (4)
C7	0.35906 (8)	1.01602 (18)	0.15868 (8)	0.0253 (4)
C8	0.43766 (8)	1.00741 (17)	0.12804 (8)	0.0225 (3)
C9	0.70204 (8)	0.75541 (16)	0.08748 (7)	0.0203 (3)
C10	0.77139 (8)	0.68369 (18)	0.11756 (8)	0.0239 (3)
C11	0.85312 (9)	0.75054 (19)	0.01961 (9)	0.0278 (4)
C12	0.78812 (10)	0.8257 (2)	-0.01530 (8)	0.0301 (4)
C13	0.71109 (9)	0.82767 (19)	0.01895 (8)	0.0265 (4)
C14	0.45329 (11)	0.4364 (2)	0.15721 (13)	0.0403 (5)
C16	0.45266 (8)	0.73577 (16)	0.16809 (7)	0.0202 (3)

supplementary materials

C17	0.48560 (7)	0.87039 (15)	0.13369 (7)	0.0186 (3)
H1	0.5849 (12)	0.968 (3)	0.1038 (11)	0.025 (5)*
H2	0.63390	0.77310	0.18300	0.0250*
H3A	0.61830	0.50820	0.13880	0.0290*
H3B	0.56240	0.57300	0.07270	0.0290*
H4	0.52270	0.57720	0.22640	0.0290*
Н5	0.34990	0.65700	0.22240	0.0310*
H7	0.32710	1.10930	0.15550	0.0300*
H8	0.45930	1.09590	0.10280	0.0270*
H10	0.76570	0.63400	0.16410	0.0290*
H11	0.90530	0.74890	-0.00410	0.0330*
H12	0.79590	0.87500	-0.06170	0.0360*
H13	0.66550	0.87750	-0.00400	0.0320*
H14A	0.48900	0.34430	0.16230	0.0480*
H14B	0.43230	0.44200	0.10670	0.0480*
H14C	0.40700	0.42800	0.19160	0.0480*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.0180 (4)	0.0536 (7)	0.0512 (6)	0.0078 (4)	0.0113 (4)	0.0115 (5)
N1	0.0157 (5)	0.0172 (5)	0.0327 (6)	0.0014 (4)	0.0026 (4)	0.0051 (4)
N2	0.0198 (5)	0.0270 (6)	0.0353 (6)	0.0051 (4)	0.0010 (4)	0.0001 (5)
C2	0.0170 (5)	0.0225 (6)	0.0221 (5)	0.0032 (4)	-0.0001 (4)	0.0019 (4)
C3	0.0226 (6)	0.0186 (6)	0.0306 (6)	0.0024 (5)	0.0001 (5)	0.0034 (5)
C4	0.0212 (6)	0.0218 (6)	0.0307 (6)	0.0010 (5)	-0.0004 (5)	0.0085 (5)
C5	0.0192 (6)	0.0302 (7)	0.0284 (6)	-0.0006 (5)	0.0014 (5)	0.0072 (5)
C6	0.0141 (5)	0.0384 (8)	0.0290 (6)	0.0030 (5)	0.0021 (5)	0.0033 (6)
C7	0.0181 (6)	0.0277 (7)	0.0300 (6)	0.0055 (5)	-0.0024 (5)	0.0009 (5)
C8	0.0186 (5)	0.0208 (6)	0.0280 (6)	0.0019 (4)	-0.0016 (4)	0.0019 (5)
C9	0.0176 (5)	0.0213 (6)	0.0221 (5)	0.0028 (4)	0.0009 (4)	0.0003 (4)
C10	0.0199 (6)	0.0255 (6)	0.0264 (6)	0.0047 (5)	0.0000 (4)	0.0023 (5)
C11	0.0210 (6)	0.0293 (7)	0.0330 (7)	0.0025 (5)	0.0061 (5)	-0.0047 (6)
C12	0.0269 (7)	0.0384 (8)	0.0250 (6)	0.0036 (6)	0.0060 (5)	0.0028 (6)
C13	0.0227 (6)	0.0330 (7)	0.0238 (6)	0.0054 (5)	0.0013 (5)	0.0044 (5)
C14	0.0312 (8)	0.0226 (7)	0.0671 (12)	-0.0030 (6)	0.0017 (8)	0.0094 (7)
C16	0.0172 (5)	0.0219 (6)	0.0216 (5)	0.0004 (4)	-0.0019 (4)	0.0041 (4)
C17	0.0149 (5)	0.0191 (6)	0.0218 (5)	0.0001 (4)	-0.0016 (4)	0.0013 (4)

Geometric parameters (Å, °)

F1—C6	1.3723 (17)	C11—C12	1.387 (2)
N1—C2	1.4606 (18)	C12—C13	1.396 (2)
N1—C17	1.3999 (16)	C16—C17	1.4112 (18)
N2—C10	1.3418 (19)	С2—Н2	1.0000
N2—C11	1.341 (2)	С3—НЗА	0.9900
N1—H1	0.90 (2)	С3—Н3В	0.9900
С2—С9	1.5133 (18)	C4—H4	1.0000
C2—C3	1.5261 (19)	С5—Н5	0.9500

C3—C4	1.537 (2)	С7—Н7	0.9500
C4—C14	1.536 (2)	С8—Н8	0.9500
C4—C16	1.523 (2)	C10—H10	0.9500
C5—C16	1.4028 (19)	C11—H11	0.9500
C5—C6	1.384 (2)	C12—H12	0.9500
C6—C7	1.379 (2)	С13—Н13	0.9500
С7—С8	1.3931 (19)	C14—H14A	0.9800
C8—C17	1.4066 (19)	C14—H14B	0.9800
C9—C10	1.3919 (19)	C14—H14C	0.9800
<u> </u>	1.390 (2)		
$F1\cdots H2^{1}$	2.7400	H2…C16	2.9700
F1···H5 ⁿ	2.8100	H2…H4	2.5800
F1···H14C ⁱⁱ	2.6700	H2…H10	2.4700
N1…N2 ⁱⁱⁱ	3.0300 (18)	H2…F1 ^x	2.7400
N2···C13 ^{iv}	3.364 (2)	H3A…C10	2.9200
N2…N1 ^{iv}	3.0300 (18)	H3A…H14A	2.5600
N1…H13	2.5400	H3B…C17	3.0300
N2…H1 ^{iv}	2.15 (2)	H3B…H14B	2.4700
C10····C13 ^{iv}	3.534 (2)	H4…H2	2.5800
C13···C10 ⁱⁱⁱ	3.534 (2)	H4····C7 ^{xi}	2.8800
C13····N2 ⁱⁱⁱ	3.364 (2)	H4…C8 ^{xi}	2.7800
C5…H14C	2.7600	H4…C17 ^{xi}	3.1000
C5…H12 ^v	2.9700	H5…C14	2.7800
C7…H13 ^{vi}	2.9800	H5…H14C	2.2300
C7…H4 ^{vii}	2.8800	H5…H10 ⁱ	2.4800
C8…H14A ^{viii}	3.0500	H5…F1 ^{xii}	2.8100
C8…H13 ^{vi}	2.9700	H8…C14 ^{viii}	3.0700
C8…H4 ^{vii}	2.7800	H8…H1	2.3100
С10…НЗА	2.9200	H8…H14A ^{viii}	2.4200
C10…H1 ^{iv}	2.98 (2)	H10…H2	2.4700
C11····H1 ^{iv}	3.02 (2)	H10…H5 ^x	2.4800
С13…Н1	2.83 (2)	H11····C16 ^{xiii}	3.0800
С14…Н5	2.7800	H11····C17 ^{xiii}	2.8800
C14…H8 ^{ix}	3.0700	H12···C5 ^{xiii}	2.9700
С16…Н2	2.9700	H13…N1	2.5400
C16…H11 ^v	3.0800	H13…H1	2.4800
С17…Н3В	3.0300	H13····C7 ^{vi}	2.9800
C17…H11 ^v	2.8800	H13···C8 ^{vi}	2.9700
C17…H4 ^{vii}	3.1000	H14A…C8 ^{ix}	3.0500
H1…C13	2.83 (2)	Н14А…НЗА	2.5600
H1…H8	2.3100	H14A…H8 ^{ix}	2.4200
H1…H13	2.4800	H14B…H3B	2.4700
H1…N2 ⁱⁱⁱ	2.15 (2)	H14C…C5	2.7600

supplementary materials

H1…C10 ⁱⁱⁱ	2.98 (2)	Н14С…Н5	2.2300
H1···C11 ⁱⁱⁱ	3.02 (2)	H14C…F1 ^{xii}	2.6700
C2—N1—C17	116 56 (11)	C3—C2—H2	109.00
C10—N2—C11	117.26 (13)	C9—C2—H2	109.00
C2—N1—H1	114.0 (13)	С2—С3—НЗА	109.00
C17—N1—H1	109.1 (13)	C2—C3—H3B	109.00
N1 - C2 - C3	107.87 (11)	C4—C3—H3A	109.00
N1—C2—C9	110.90 (11)	C4—C3—H3B	109.00
C3—C2—C9	112.12 (11)	H3A—C3—H3B	108.00
C2—C3—C4	110.93 (11)	C3—C4—H4	108.00
C14—C4—C16	113.55 (12)	C14—C4—H4	108.00
C3—C4—C14	109.37 (13)	C16—C4—H4	108.00
C3—C4—C16	110.87 (11)	C6—C5—H5	120.00
C6—C5—C16	120.07 (14)	C16—C5—H5	120.00
C5—C6—C7	122.83 (13)	С6—С7—Н7	121.00
F1—C6—C5	118.53 (14)	С8—С7—Н7	121.00
F1—C6—C7	118.64 (14)	С7—С8—Н8	119.00
C6—C7—C8	117.58 (13)	C17—C8—H8	119.00
C7—C8—C17	121.37 (13)	N2-C10-H10	118.00
C_{2} C_{9} C_{13}	123.77 (12)	C9—C10—H10	118.00
C10-C9-C13	117.29 (12)	N2—C11—H11	118.00
C2-C9-C10	118.94 (12)	C12—C11—H11	118.00
N2-C10-C9	124.44 (14)	C11-C12-H12	121.00
N2—C11—C12	123.09 (14)	С13—С12—Н12	121.00
C11—C12—C13	118.84 (14)	C9—C13—H13	120.00
C9—C13—C12	119.08 (13)	С12—С13—Н13	120.00
C4—C16—C17	120.96 (11)	C4—C14—H14A	109.00
C5-C16-C17	118.23 (12)	C4—C14—H14B	109.00
C4—C16—C5	120.78 (12)	C4—C14—H14C	109.00
C8—C17—C16	119.84 (11)	H14A—C14—H14B	109.00
N1—C17—C8	118.58 (12)	H14A—C14—H14C	110.00
N1—C17—C16	121.56 (11)	H14B—C14—H14C	110.00
N1—C2—H2	109.00		
C17—N1—C2—C3	51.97 (15)	C16—C5—C6—C7	1.4 (2)
C17—N1—C2—C9	175.10(11)	C6—C5—C16—C4	178.44 (13)
C2—N1—C17—C8	160.05 (12)	C6—C5—C16—C17	0.5 (2)
C2—N1—C17—C16	-21.78 (18)	F1—C6—C7—C8	179.78 (13)
C11—N2—C10—C9	0.0 (2)	C5—C6—C7—C8	-1.2 (2)
C10—N2—C11—C12	0.1 (2)	C6—C7—C8—C17	-1.0(2)
N1—C2—C3—C4	-63.55 (14)	C7—C8—C17—N1	-178.91 (13)
C9—C2—C3—C4	174.07 (11)	C7—C8—C17—C16	2.9 (2)
N1—C2—C9—C10	162.18 (12)	C2-C9-C10-N2	-179.82 (14)
N1—C2—C9—C13	-17.85 (18)	C13—C9—C10—N2	0.2 (2)
C3—C2—C9—C10	-77.19 (16)	C2—C9—C13—C12	179.53 (14)
C3—C2—C9—C13	102.79 (16)	C10-C9-C13-C12	-0.5 (2)
C2—C3—C4—C14	170.01 (13)	N2-C11-C12-C13	-0.4 (2)
C2—C3—C4—C16	44.05 (15)	C11—C12—C13—C9	0.6 (2)
C3—C4—C16—C5	168.74 (12)	C4—C16—C17—N1	1.35 (19)

C3—C4—C16—C17	-13.41 (18)	C4—C16—C17—C8	179.50 (12)
C14—C4—C16—C5	45.14 (19)	C5-C16-C17-N1	179.26 (12)
C14—C4—C16—C17	-137.01 (15)	C5-C16-C17-C8	-2.59 (19)
C16—C5—C6—F1	-179.54 (13)		

Symmetry codes: (i) *x*-1/2, *y*, -*z*+1/2; (ii) -*x*+1/2, *y*+1/2, *z*; (iii) -*x*+3/2, *y*+1/2, *z*; (iv) -*x*+3/2, *y*-1/2, *z*; (v) *x*-1/2, -*y*+3/2, -*z*; (vi) -*x*+1, -*y*+2, -*z*; (vii) -*x*+1, *y*+1/2, -*z*+1/2; (viii) *x*, *y*+1, *z*; (ix) *x*, *y*-1, *z*; (x) *x*+1/2, *y*, -*z*+1/2; (xi) -*x*+1, *y*-1/2, -*z*+1/2; (xii) -*x*+1/2, *y*-1/2, *z*; (xiii) *x*+1/2, -*y*+3/2, -*z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1…N2 ⁱⁱⁱ	0.90 (2)	2.15 (2)	3.0300 (18)	165.5 (18)
C4—H4…Cg ^{xi}	1.00	2.87	3.7421 (16)	146

Symmetry codes: (iii) -x+3/2, y+1/2, z; (xi) -x+1, y-1/2, -z+1/2.

